Unity
Unity
About
News
Events
Docs
Contact Us
code
search
login
Unity
Unity
About
News
Events
Docs
Contact Us
dark_mode
light_mode
code login
search

Documentation

  • Requesting An Account
  • Get Started
    • Quick Start
    • Common Terms
    • HPC Resources
    • Theory of HPC
      • Overview of threads, cores, and sockets in Slurm for HPC workflows
    • Git Guide
  • Connecting to Unity
    • SSH
    • Unity OnDemand
    • Connecting to Desktop VS Code
  • Get Help
    • Frequently Asked Questions
    • How to Ask for Help
    • Troubleshooting
  • Cluster Specifications
    • Node List
    • Partition List
    • Storage
    • Node Features (Constraints)
      • NVLink and NVSwitch
    • GPU Summary List
  • Managing Files
    • Command Line Interface (CLI)
    • Disk Quotas
    • FileZilla
    • Globus
    • Scratch: HPC Workspace
    • Unity OnDemand File Browser
  • Submitting Jobs
    • Batch Jobs
      • Array Batch Jobs
      • Large Job Counts
      • Monitor a batch job
    • Helper Scripts
    • Interactive CLI Jobs
    • Unity OnDemand
    • Message Passing Interface (MPI)
    • Slurm cheat sheet
  • Software Management
    • Building Software from Scratch
    • Conda
    • Modules
      • Module Usage
    • Renv
    • Unity OnDemand
      • JupyterLab OnDemand
    • Venv
  • Tools & Software
    • ColabFold
    • R
      • R Parallelization
    • Unity GPUs
  • Datasets
    • AI and ML
      • AlpacaFarm
      • audioset
      • bigcode
      • biomed_clip
      • blip_2
      • coco
      • Code Llama
      • DeepAccident
      • DeepSeek
      • DINO v2
      • epic-kitchens
      • florence
      • FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing in Latent Space
      • gemma
      • glm
      • gpt
      • gte-Qwen2
      • HiDream-I1: A High-Efficient Image Generative Foundation Model with Sparse Diffusion Transformer
      • ibm-granite
      • Idefics2
      • Imagenet 1K
      • inaturalist
      • infly
      • internLM
      • intfloat
      • kinetics-400 @misc{kay2017kineticshumanactionvideo, title={The Kinetics Human Action Video Dataset}, author={Will Kay and Joao Carreira and Karen Simonyan and Brian Zhang and Chloe Hillier and Sudheendra Vijayanarasimhan and Fabio Viola and Tim Green and Trevor Back and Paul Natsev and Mustafa Suleyman and Andrew Zisserman}, year={2017}, eprint={1705.06950}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/1705.06950},}
      • lg
      • linq
      • Llama2
      • llama3
      • llama4
      • Llava_OneVision
      • llm-compiler
      • Lumina
      • mims
      • mixtral
      • msmarco
      • natural-questions
      • objaverse
      • openai-whisper
      • Perplexity AI
      • phi
      • playgroundai
      • pythia
      • qwen
      • rag-sequence-nq
      • s1-32B
      • satlas_pretrain
      • scalabilityai
      • sft
      • SlimPajama
      • t5
      • Tulu
      • V2X
      • video-MAE
      • vit
      • wildchat
    • Bioinformatics
      • AlphaFold3 Databases
      • BFD/MGnify
      • Big Fantastic Database
      • checkm
      • ColabFoldDB
      • Databases for ColabFold
      • dfam
      • EggNOG - version 5.0
      • EggNOG - version 6.0
      • EVcouplings databases
      • Genomes from NCBI RefSeq database
      • GMAP-GSNAP database (human genome)
      • GTDB
      • Illumina iGenomes
      • Kraken2
      • MGnify
      • NCBI BLAST databases
      • NCBI RefSeq database
      • Parameters of AlphaFold
      • Parameters of Evolutionary Scale Modeling (ESM) models
      • PDB70
      • PINDER
      • PLINDER
      • Protein Data Bank
      • Protein Data Bank database in mmCIF format
      • Protein Data Bank database in SEQRES records
      • Tara Oceans 18S amplicon
      • Tara Oceans MATOU gene catalog
      • Tara Oceans MGT transcriptomes
      • Uniclust30
      • UniProtKB
      • UniRef100
      • UniRef30
      • UniRef90
      • Updated databases for ColabFold
    • Using HuggingFace Datasets

Documentation

  • Requesting An Account
  • Get Started
    • Quick Start
    • Common Terms
    • HPC Resources
    • Theory of HPC
      • Overview of threads, cores, and sockets in Slurm for HPC workflows
    • Git Guide
  • Connecting to Unity
    • SSH
    • Unity OnDemand
    • Connecting to Desktop VS Code
  • Get Help
    • Frequently Asked Questions
    • How to Ask for Help
    • Troubleshooting
  • Cluster Specifications
    • Node List
    • Partition List
    • Storage
    • Node Features (Constraints)
      • NVLink and NVSwitch
    • GPU Summary List
  • Managing Files
    • Command Line Interface (CLI)
    • Disk Quotas
    • FileZilla
    • Globus
    • Scratch: HPC Workspace
    • Unity OnDemand File Browser
  • Submitting Jobs
    • Batch Jobs
      • Array Batch Jobs
      • Large Job Counts
      • Monitor a batch job
    • Helper Scripts
    • Interactive CLI Jobs
    • Unity OnDemand
    • Message Passing Interface (MPI)
    • Slurm cheat sheet
  • Software Management
    • Building Software from Scratch
    • Conda
    • Modules
      • Module Usage
    • Renv
    • Unity OnDemand
      • JupyterLab OnDemand
    • Venv
  • Tools & Software
    • ColabFold
    • R
      • R Parallelization
    • Unity GPUs
  • Datasets
    • AI and ML
      • AlpacaFarm
      • audioset
      • bigcode
      • biomed_clip
      • blip_2
      • coco
      • Code Llama
      • DeepAccident
      • DeepSeek
      • DINO v2
      • epic-kitchens
      • florence
      • FLUX.1 Kontext: Flow Matching for In-Context Image Generation and Editing in Latent Space
      • gemma
      • glm
      • gpt
      • gte-Qwen2
      • HiDream-I1: A High-Efficient Image Generative Foundation Model with Sparse Diffusion Transformer
      • ibm-granite
      • Idefics2
      • Imagenet 1K
      • inaturalist
      • infly
      • internLM
      • intfloat
      • kinetics-400 @misc{kay2017kineticshumanactionvideo, title={The Kinetics Human Action Video Dataset}, author={Will Kay and Joao Carreira and Karen Simonyan and Brian Zhang and Chloe Hillier and Sudheendra Vijayanarasimhan and Fabio Viola and Tim Green and Trevor Back and Paul Natsev and Mustafa Suleyman and Andrew Zisserman}, year={2017}, eprint={1705.06950}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/1705.06950},}
      • lg
      • linq
      • Llama2
      • llama3
      • llama4
      • Llava_OneVision
      • llm-compiler
      • Lumina
      • mims
      • mixtral
      • msmarco
      • natural-questions
      • objaverse
      • openai-whisper
      • Perplexity AI
      • phi
      • playgroundai
      • pythia
      • qwen
      • rag-sequence-nq
      • s1-32B
      • satlas_pretrain
      • scalabilityai
      • sft
      • SlimPajama
      • t5
      • Tulu
      • V2X
      • video-MAE
      • vit
      • wildchat
    • Bioinformatics
      • AlphaFold3 Databases
      • BFD/MGnify
      • Big Fantastic Database
      • checkm
      • ColabFoldDB
      • Databases for ColabFold
      • dfam
      • EggNOG - version 5.0
      • EggNOG - version 6.0
      • EVcouplings databases
      • Genomes from NCBI RefSeq database
      • GMAP-GSNAP database (human genome)
      • GTDB
      • Illumina iGenomes
      • Kraken2
      • MGnify
      • NCBI BLAST databases
      • NCBI RefSeq database
      • Parameters of AlphaFold
      • Parameters of Evolutionary Scale Modeling (ESM) models
      • PDB70
      • PINDER
      • PLINDER
      • Protein Data Bank
      • Protein Data Bank database in mmCIF format
      • Protein Data Bank database in SEQRES records
      • Tara Oceans 18S amplicon
      • Tara Oceans MATOU gene catalog
      • Tara Oceans MGT transcriptomes
      • Uniclust30
      • UniProtKB
      • UniRef100
      • UniRef30
      • UniRef90
      • Updated databases for ColabFold
    • Using HuggingFace Datasets
  1. Unity
  2. Documentation
  3. Datasets
  4. AI and ML
  5. llm-compiler

llm-compiler

Path:/datasets/ai/llm-compiler
URL:https://huggingface.co/collections/facebook/llm-compiler-667c5b05557fe99a9edd25cb
Downloaded:2025-07-07
Cite:Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel Synnaeve, and Hugh Leather. 2025. LLM Compiler: Foundation Language Models for Compiler Optimization. In Proceedings of the 34th ACM SIGPLAN International Conference on Compiler Construction (CC ‘25). Association for Computing Machinery, New York, NY, USA, 141–153. https://doi.org/10.1145/3708493.3712691
Variant:
    Bibtex:
    @inproceedings{10.1145/3708493.3712691, author = {Cummins, Chris and Seeker, Volker and Grubisic, Dejan and Roziere, Baptiste and Gehring, Jonas and Synnaeve, Gabriel and Leather, Hugh}, title = {LLM Compiler: Foundation Language Models for Compiler Optimization}, year = {2025}, isbn = {9798400714078}, publisher = {Association for Computing Machinery}, address = {New York, NY, USA}, url = {https://doi.org/10.1145/3708493.3712691}, doi = {10.1145/3708493.3712691}, abstract = {Large Language Models (LLMs) have demonstrated remarkable capabilities across a variety of software engineering and coding tasks. However, their application in the domain of code and compiler optimization remains underexplored. Training LLMs is resource-intensive, requiring substantial GPU hours and extensive data collection, which can be prohibitive. To address this gap, we introduce LLMCompiler, a suite of robust, openly available, pre-trained models specifically designed for compiler tasks. Built on the foundation of CodeLlama, LLM Compiler enhances the understanding of compiler intermediate representations (IRs), assembly language, and optimization techniques. The models have been trained on a vast corpus of 546 billion tokens of LLVM-IR and assembly code and have undergone instruction fine-tuning to interpret compiler behavior. To demonstrate the utility of these research tools, we also present fine-tuned versions of the models with enhanced capabilities in optimizing code size and disassembling from x86_64 and ARM assembly back into LLVM-IR. These achieve 77\% of the optimising potential of an autotuning search, and 45\% disassembly round trip (14\% exact match). LLMCompiler is released under a bespoke commercial license to allow wide reuse and is available in two sizes: 7 billion and 13 billion parameters. Our aim is to provide scalable, cost-effective foundational models for further research and development in compiler optimization by both academic researchers and industry practitioners. Since we released LLMCompiler the community has quantized, repackaged, and downloaded the models over 250k times.}, booktitle = {Proceedings of the 34th ACM SIGPLAN International Conference on Compiler Construction}, pages = {141–153}, numpages = {13}, keywords = {Code Optimization, Compiler Optimization, LLVM-IR, Large Language Models, Pre-trained Models}, location = {Las Vegas, NV, USA}, series = {CC '25} }
    
    Last modified: Tuesday, July 22, 2025 at 3:05 AM. See the commit on GitLab.
    University of Massachusetts Amherst University of Massachusetts Amherst University of Rhode Island University of Rhode Island University of Massachusetts Dartmouth University of Massachusetts Dartmouth University of Massachusetts Lowell University of Massachusetts Lowell University of Massachusetts Boston University of Massachusetts Boston Mount Holyoke College Mount Holyoke College Smith College Smith College Olin College of Engineering Olin College of Engineering
    search
    close