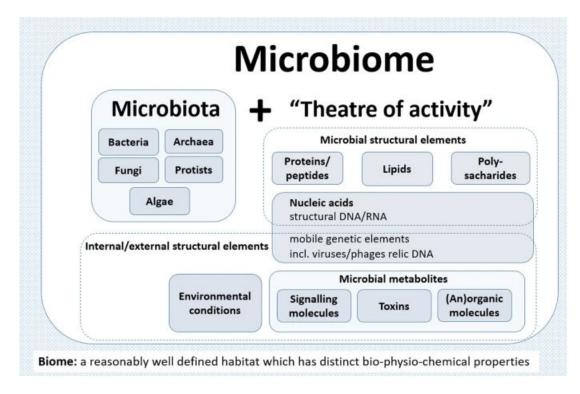
Introduction to Bioinformatics on Unity III

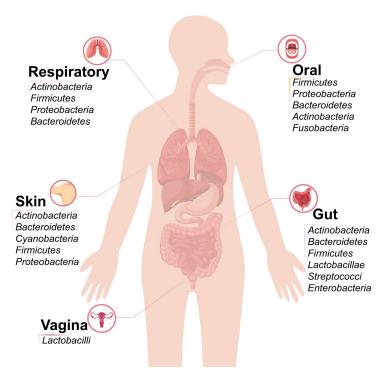

Cecile Cres & Anna Schrecengost May 6, 2024

Outline

- Microbiome research
- Amplicon sequencing overview
- Example of amplicon sequencing data analysis pipeline
 - Downloading Data
 - Data pre-processing (primer trimming)
 - Denoising
 - Taxonomic assignment
 - Phylogenetic placement & taxonomic assignment

Microbiome research

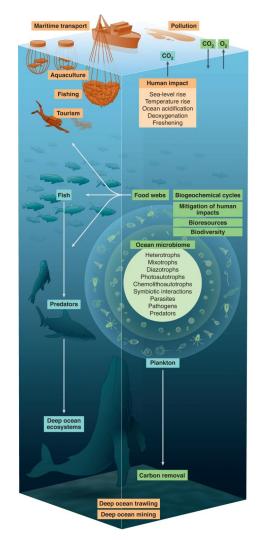
- A microbiome refers to the collection of genomes from all the microorganisms in a particular habitat as well as the structural elements, metabolites and environmental conditions
- The microbiota describes the microorganisms
- Example of microbiomes:
 - Human microbiome
 - Ocean microbiome
- What are the microbial species and what are their function?

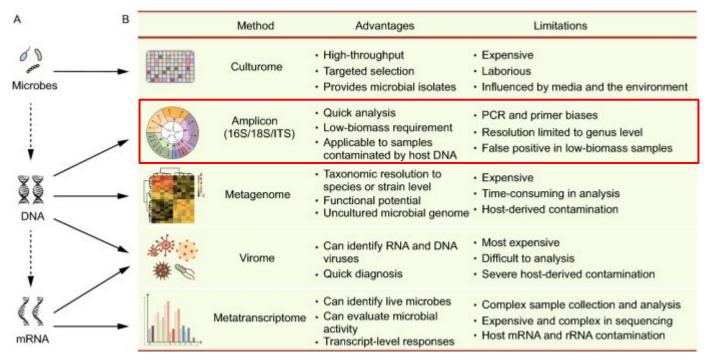


Berg, G., Rybakova, D., Fischer, D. et al. Microbiome definition re-visited: old concepts and new challenges. Microbiome 8, 103 (2020). https://doi.org/10.1186/s40168-020-00875-0

Human microbiome

- The composition of microbiota varies from one site to another
- Bacteria, archaea, fungi and viruses
- Goal: understand the relationship between microbiota and diseases
- Gut-brain axis: connection between brain physiology and gut microbial ecology


Microbiota composition in different regions


Hou, K., Wu, ZX., Chen, XY. et al. Microbiota in health and diseases. Sig Transduct Target Ther 7, 135 (2022). https://doi.org/10.1038/s41392-022-00974-4

Ocean microbiome

- Prokaryotes, eukaryotic microbes and viruses
 - Biogeochemical cycling (CO2 capture, O2 generation and carbon removal)
- Marine water, sediments, coral reefs, hydrothermal vents
- Goal: improve our understanding of microorganisms and their roles in the ocean

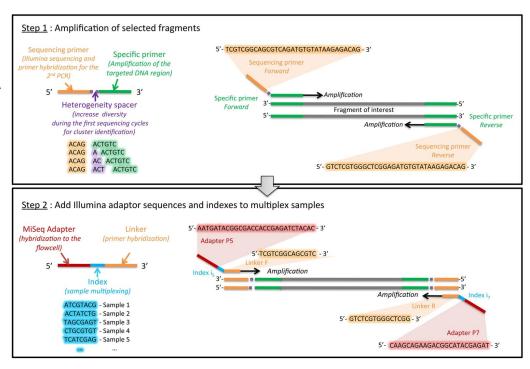
Methods used in microbiome research

Liu, YX., Qin, Y., Chen, T. et al. A practical guide to amplicon and metagenomic analysis of microbiome data. Protein Cell 12, 315–330 (2021). https://doi.org/10.1007/s13238-020-00724-8

Amplicon sequencing

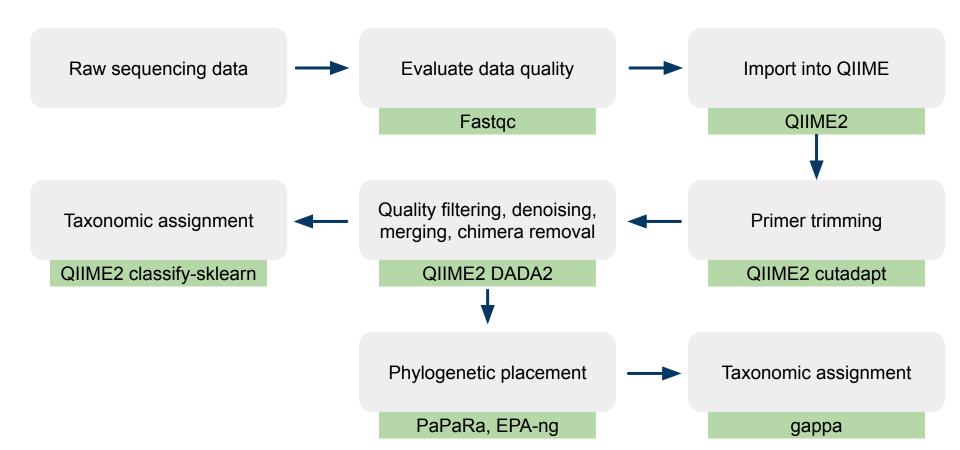
- Amplicon: the resulting sequence of a targeted amplification of genetic material
- Useful for detection of hotspot mutations, gene fusions and single-nucleotide polymorphisms (SNPs), taxonomic classification of microorganisms
- Targeted (use of primers) sequencing of marker genes
 - 16S ribosomal DNA in prokaryotes
 - 18S ribosomal DNA in eukaryotes

Workflow of amplicon sequencing:



Amplicon sequencing

Library preparation


- Two-step polymerase chain reactions (PCR):
 - First PCR reaction: the targeted DNA region is amplified using specific primers flanked by sequencing primers
 - Second PCR reaction: the sequencing primers allow for a second PCR reaction to add adapter sequences and indexes for sample multiplexing

Demultiplexing: step in high-throughput sequencing data analysis where sequences are sorted based on their sample of origin

Cruaud, P., Rasplus, JY., Rodriguez, L. et al. High-throughput sequencing of multiple amplicons for barcoding and integrative taxonomy. Sci Rep 7, 41948 (2017). https://doi.org/10.1038/srep41948

Amplicon sequencing data analysis pipeline

SSU-rRNA Gene Sequencing Survey of Benthic Microbial Eukaryotes from Guaymas Basin Hydrothermal Vent

Alexis Pasulka^a (D), Sarah K. Hu^{b,1}, Peter D. Countway^c, Kathryn J. Coyne^d, Stephen C. Cary^e, Karla B. Heidelberg^b & David A. Caron^b

- a Biological Sciences Department, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California, USA
- b Department of Biological Sciences, University of Southern California, 3616 Trousdale Parkway, AHF 301 Los Angeles, Los Angeles, California, USA
- c Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, Maine, USA
- d College of Earth, Ocean, and Environment, University of Delaware, 700 Pilottown Road, Lewes, Delaware, USA
- e Department of Biological Sciences, The University of Waikato, Private Bag 3105, Hamilton, New Zealand
- 18S rRNA gene high-throughput sequencing of the V4 region (expected amplicon size: ~300 bp)
- Raw sequence data (Illumina MiSeq) available in the Sequence Read Archive (SRA) repository (BioProject accession ID: PRJNA391741)
- The following example for amplicon sequencing data analysis is done one one sample

Start interactive session on Unity command line

Requesting: # of cpu cores; amount of memory; time; Unity partition

salloc --cpus-per-task 8 --mem=8G --time 1:00:00 --partition cpu,uri-cpu,cpu-preempt

Download from NCBI Sequence Read Archive (SRA)

Need to use NCBI's SRA toolkit to download data from the SRA

```
module load sratoolkit/3.0.7
 module load entrezdirect/10.7.20190114
                                                                  Fetches information about sequencing runs
 module load parallel/20210922
                                                                  based on accession ID
 project='PRJNA391741'
esearch -db sra -query $project | efetch -format runinfo > runinfo.csv
                                                                 Pulls out sample IDs
 cat runinfo.csv | cut -d "," -f 1 > SRR.numbers
 sed -i '1d' SRR.numbers
cat SRR.number | parallel fastq-dump --split-files --origfmt --gzip
                                                                  Downloads fastg files from all samples in
                                                                  parallel
mkdir fastq/
                                                                  Download only one sample based on sample
cd fastq/
fastq-dump SRR5753741 --split-files --origfmt --gzip
                                                                  ID on SRA
```

Visualize quality of reads with fastqc

```
module load fastqc/0.11.9
module load MultiQC/1.12-foss-2021b

mkdir fastqc/
fastqc fastq/*_1* --outdir fastqc/
fastqc fastqc/*_2* --outdir fastqc/

multiqc fastqc/*_1_fastqc.zip --filename forward_multiqc.html --outdir multiqc/
multiqc fastqc/*_2_fastqc.zip --filename reverse_multiqc.html --outdir multiqc/
```

Summarizes sequence quality for each fastq file (forward and reverse)

If you have many samples, summarizes the fastqc results into one file per read direction

Import into QIIME2

```
cd fastq/
rename 's/_/_00_L001_/g' *
rename 's/.fastq.gz/_001.fastq.gz/g' *
rename 's/_1/_R1/g' *
rename 's/_2/_R2/g' *

qiime tools import \
    --type 'SampleData[PairedEndSequencesWithQuality]' \
    --input-path fastq/ \
    --output-path work/demux_PE.qza \
    --input-format CasavaOneEightSingleLanePerSampleDirFmt
```


Note: this is an older version of qiime, you should install the latest version in a <u>conda environment</u>

We are importing into QIIME using a specific file name format (Casava), so we need to rename our files first. You can also use a manifest file to import fastq files, <u>instructions here</u>

Import fastq files into QIIME

Pre-processing - trim primers

- Primers don't always bind perfectly to the target sequence (sequence not identical to the target DNA sequence).
- Use Cutadapt to remove primers and any preceding bases

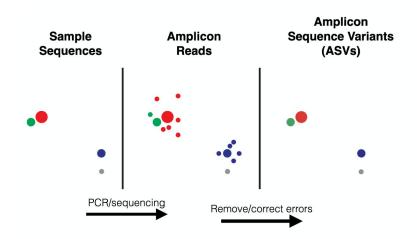
- Primer: short nucleotide sequence complementary to the target sequence
- Index: short nucleotide sequence that serves as a unique identifier associated with a sample
- Adapter: short nucleotide sequence that allows the library to bind to the sequencing flow cell

Pre-processing - trim primers

```
giime cutadapt trim-paired \
      --i-demultiplexed-sequences work/demux PE.gza \
      --p-cores 8 \
      --p-front-f CCAGCASCYGCGGTAATTCC \
                                                                    Forward primer sequence
      --p-front-r ACTTTCGTTCTTGATYRA\
                                                                    Reverse primer sequence
      --p-match-adapter-wildcards \
      --p-match-read-wildcards \
      --p-minimum-length 10 \
      --p-discard-untrimmed \
                                                                    Discard reads that were not
      --verbose \
                                                                    trimmed/did not contain primers
      --o-trimmed-sequences work/demux_PE_trimmed.qza
qiime demux summarize --i-data work/demux PE trimmed.gza
--o-visualization work/demux PE trimmed.qzv
```

Denoising - DADA2

<u>DADA2:</u> Filters based on quality score of bases, denoises sequences (models and corrects sequencing errors from Illumina sequencer), merges forward and reverse reads, and then filters out chimeras


```
qiime dada2 denoise-paired \
--i-demultiplexed-seqs work/demux_PE_trimmed.qza \
--p-trunc-len-f 220 \
--p-trunc-len-r 210 \
--p-n-threads 8 \
--verbose \
--o-table work/table.qza \
--o-representative-sequences work/rep-seqs.qza \
--o-denoising-stats work/DADA2-stats.qza

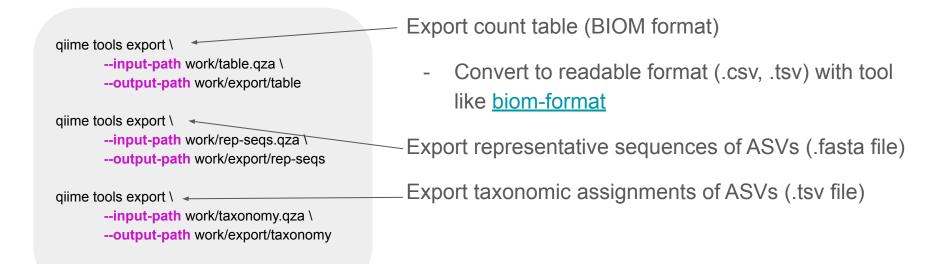
qiime metadata tabulate --m-input-file work/DADA2-stats.qza --o-visualization work/DADA2-stats.qzv
```

Truncate sequences when they start to drop off in quality

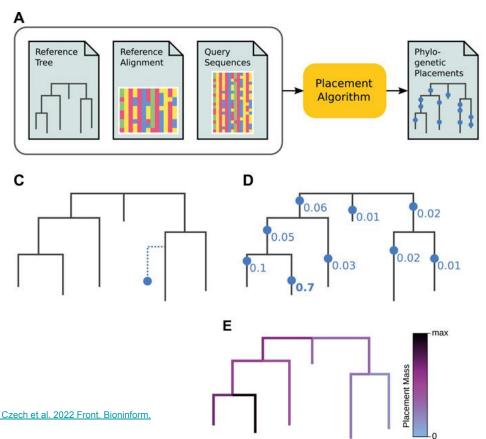
Amplicon denoising

- Sequence quality control step to remove sequence errors from amplicon reads and obtain Amplicon Sequence Variants (ASVs)
- Used to improve taxonomic assignment of amplicon reads
- Use DADA2 to perform denoising
 - DADA2 implements a 'quality-aware model' of sequencing errors and corrects the reads by removing noise related to the sequencing methodology

Assign taxonomy


Download premade classifier from **QIIME2** website

Can also create your own (e.g. with another database like <u>PR2</u> - <u>instructions to</u> <u>train your own</u>)


```
wget https://data.qiime2.org/2021.8/common/silva-138-99-nb-classifier.qza

qiime feature-classifier classify-sklearn \
--i-classifier work/silva-138-99-nb-classifier.qza \
--i-reads work/rep-seqs.qza \
--o-classification work/taxonomy.qza
```

Export QIIME artifacts

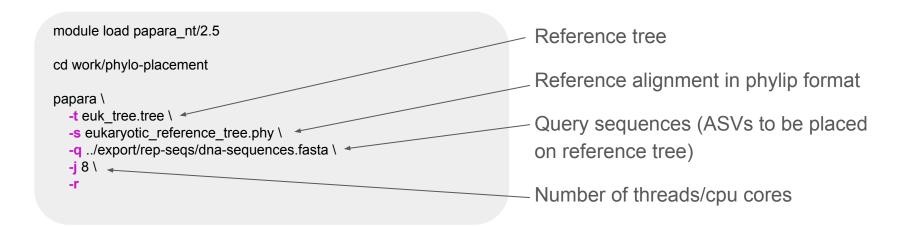
Phylogenetic placement

Place query sequences (ASVs) onto a reference phylogenetic tree in order to get a deeper understanding of the phylogenetic composition of your samples

- Capture diversity which is underrepresented in reference databases - do not need exact match, takes evolutionary history into account
- More accurate way to analyze phylogeny of your samples and conduct phylogenetically aware diversity analyses (versus de novo tree-building methods)
- Can use for taxonomic assignment, diversity quantification, sample comparison, correlation with environmental variables

Phylogenetic placement

Need a reference phylogenetic tree to place sequences onto:

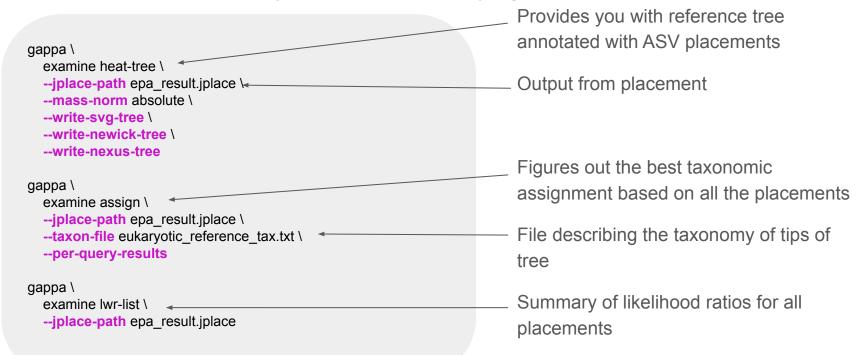

- 1. Reference phylogenetic tree
- 2. Reference alignment
- 3. File describing taxonomy of each tip of phylogenetic tree

This reference tree should span the diversity of sequences that will be placed on the tree, and should contain (nearly) full-length, high quality, curated sequences from relevant gene (here, 18S rRNA)

Here, using eukaryotic tree of life from this publication

Phylogenetic placement - <u>PaPaRa</u>

Aligns ASVs to reference sequences so that they can be placed onto reference phylogenetic tree



Phylogenetic placement - <u>EPA-ng</u>

```
Conda environment where installed
module load anaconda/2022.10
conda activate phylo-placement
                                                                       epa-nq, raxml-nq, and gappa
epa-ng \
                                                                       Output from papara
  --split eukaryotic_reference.fasta \
  papara alignment.default
                                                                       epa-ng --split and raxml-ng: necessary
raxml-ng \
                                                                       steps to prepare for placement
  --evaluate \
  --msa reference.fasta \
  --tree euk tree.tree \
  --model GTR+G \
                                                                       Reference tree
  --threads 8
epa-ng \
                                                                        Reference alignment and ASVs (output
  --filter-acc-lwr 0.99 \
                                                                       from epa-ng --split)
  --filter-max 70 \
  -t euk tree.tree \
                                                                       Output from raxml-ng
  -s reference.fasta \
  -q query.fasta \ -
  --model reference.fasta.raxml.bestModel
```

Phylogenetic placement - gappa

Tools to visualize and analyze results from phylogenetic placement

Additional Resources

- Unity Onboarding video (Spring 2024)
- QIIME2 snakemake pipeline
- Snakemake workshop

- Unity community Slack
- More contact information